Vol. 63, No. 4 /1 February 2024 / Applied Optics

Research Article

-
"ﬂ | 1110

: appliedoptics

updates

Ray-tracing model of a perfect lens compliant
with Fermat’s principle: the Cardinal Lens

JEFFREY P. WILDE
E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA (jpwilde@stanford.edu)

Received 13 October 2023; revised 5 January 2024; accepted 6 January 2024; posted 9 January 2024, published 29 January 2024

When using ray tracing for optical system design, it is often the case that the designer would like to implement sim-
plified versions of one or more compound lens groups. This could be the case during initial layout when idealized
versions of such compound lenses are needed or, perhaps alternatively, to mimic a well-corrected commercially
available lens for which the prescription details are unavailable. One option is to use a paraxial thin lens as a proxy
for the actual lens group, but doing so will yield a layout that is not consistent with Fermat’s principle or the Abbe
sine condition. For example, a paraxial lens version of a compound microscope objective typically produces the
wrong numerical aperture for a given entrance pupil diameter, and vice versa. A better option is to use a lens model
that provides perfect imaging for a specified paraxial magnification and obeys Fermat’s principle. A variant of the
model can yield a perfect Fourier transform lens. In addition, it is desirable to implement an idealized thick lens
in which the principal planes are separated by a user-specified distance. This paper presents such a model, referred

to as the Cardinal Lens, with implementation in Zemax OpticStudio via a user-defined surface.
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1. INTRODUCTION

In sequential optical system design, it is often useful to begin
by using a paraxial version for some, or perhaps all, of the lens
elements. Such a first-order layout helps define what the per-
formance of a system looks like when aberrations are neglected
for the idealized elements. However, there are instances when
the properties of a paraxial lens are insufficient to mimic a
real, well-corrected compound lens. The foremost limitation
stems from the fact that a paraxial lens, when used outside of
the paraxial regime, does not satisfy the Abbe sine condition,
whereas many actual lenses do obey the sine condition, at least
approximately, and are known as aplanatic lenses. They are free
from, or have minimal, spherical aberration and coma (for small
off-axis fields). If a lens is free from astigmatism over its field of
view, while also having no spherical aberration and no coma,
it is referred to as being a stigmatic lens. On a related historical
note, the well-known lens designer Paul Rudolph, while work-
ing for the Carl Zeiss company in Germany, coined the term
“anastigmatic” to describe a lens for which the astigmatism at
one off-axis field angle is zero ( [1], p. 236). More recently, this
term has come to mean a lens that is designed to have reduced
astigmatism over its field of view [2]. An interesting example of
an actual stigmatic lens is the Luneburg lens based on a spherical
gradient of the refractive index (see e.g., [3,4], p. 712). However,
for modeling an idealized perfect lens, we can ignore the physical
structure of the lens and instead treat it as a black box that has
properties consistent with Fermat’s principle.
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When capturing images with a planar sensor, one would also
like to have minimal field curvature. Distortion, on the other
hand, may or may not be a problem. For perfect imaging there
should be no distortion, but a perfect Fourier transform lens has
intrinsic distortion when viewed from an imaging perspective
[5]. So, it is beneficial to have access to a generalized perfect lens
model that (a) is free from spherical aberration, coma, astigma-
tism, and field curvature; (b) provides a specified form for the
distortion; and (c) accurately captures the constraints associated
with Fermat’s principle and hence satisfies the sine condition for
arbitrary numerical apertures. Additional flexibility arises if this
perfect lens model can mimic a thick lens with its two principal
planes separated from one another.

Commercial ray-tracing software packages provide various
types of idealized lens models. For example, Zemax OpticStudio
[6] includes a thin paraxial lens surface but has no version of a
perfect lens satisfying the sine condition. Other software such
as CODE V [7,8] and OSLO [9] offer versions of perfect lenses
that are based on so-called “mock ray tracing” using an eikonal
formulation that typically requires an iterative numerical solu-
tion when the lens is represented by a specific eikonal function (
[10], Ch.31).

In this paper a relatively straightforward perfect lens ray-
tracing model is presented that complies with Fermat’s principle
and satisfies a generalized sine condition, but does not require
eikonal function theory. Two versions are developed, one that
has no distortion, characterized by an f tan(f) response, as
needed to model perfect imaging, and a second version that has
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intrinsic f'sin(f) distortion, which is representative of an ideal
Fourier transform lens.

We refer to our particular formulation of this model as a
“Cardinal Lens” in order to distinguish it from other embod-
iments of idealized lenses [11]; it has been implemented as
a user-defined surface for sequential ray tracing in Zemax
OpticStudio, written in C++ and compiled as a 64-bit DLL
(dynamic link library) and made available in Code 1, Ref. [12].
Along with the form of the distortion, this model requires the
user to specify the effective focal length and the paraxial magni-
fication at which the lens provides optimal performance. The
lens can be embedded in media with different refractive indices
before and after the lens and can be used at large numerical aper-
ture (NA), thereby allowing, for example, simulation of (a) air or
immersion microscope objectives, (b) Fourier transform lenses
outside of the paraxial regime, and (c) wide-angle, high-speed
imaging lenses.

The remainder of the paper is structured as follows. Section 2
provides an overview of the key features associated with model-
ing a perfect lens. Section 3 describes the basic formulation of
the Cardinal Lens model. The details associated with its imple-
mentation in OpticStudio follow in Section 4. A few examples
are provided in Section 5, while additional example layouts
are included in Supplement 1. Finally, Section 6 offers a brief
summary and conclusion.

2. MODELING AN IDEALIZED PERFECT LENS
A. Problem Statement

Consider a ray propagating in a sequential optical system and
passing through an axially symmetric perfect lens as shown in
Fig. 1. The lens effective focal length is £, and the thickness of
the lens, ¢, corresponds to the separation between the principal
planes. The input space to the left of the lens is homogeneous
with refractive index 77, while the output space on the right is
homogeneous with index 7;. The ray z coordinates are mea-
sured locally relative to the principal planes, with the input and
output spaces being referred to the first and second principal
planes, respectively. A z coordinate lying to the left of either
principal plane is negative, and to the right it is positive. A ray
segment is defined by a unit vector pointing along the direction
of travel and a point in space through which the ray passes. We
denote a ray vector by 5 = (L, M, N), where (L, M, N) are
direction cosines such that N = (1 — L? — M*)1/2.

Input Ray
81 = (L1, My, Ny)

(Effective Focal Length)
ny

ny

z1(—)

Output Ray

(W, %2) §; = (L Mz, ;)

1%t Principal
Plane

t

(Lens Thickness)

2"d Principal Plane

Fig. 1.  Local coordinate system for ray tracing through an axially
symmetric perfect lens of thickness z. For a given input ray, we seek
to find the corresponding output ray that complies with Fermat’s
principle.
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In Fig. 1 an incoming ray segment S1=(Ly, My, N}) is
incident on the first principal plane of the lens at point (#1, v7).
These values are readily available from the ray-tracing soft-
ware. Our task is to find the outgoing ray segment coordinates
(u2, v2) on the second principal plane along with the direction
cosines 5, = (L,, M,, N,) in such a way that this outgoing ray
complies with Fermat’s principle, and then send these results
back to the main program so the ray can continue to propagate.
Of course proper analysis of a general optical system that incor-
porates a perfect lens requires tracing many rays, so this process
is repeated for each ray launched into the system and arriving at
the perfect lens.

B. Localized Imaging Perspective and the Principal
Reference Spheres

While the perfect lens may be just one element in a more com-
plicated sequential lens train, for purposes of ray tracing we can
analyze it in isolation, based on a localized imaging viewpoint
since determination of an outgoing ray from the lens only relies
on knowledge of the incoming ray, independent of any other
specific optical elements that may come before or after the lens.
Therefore, let us consider the imaging properties of a perfect
lens taken by itself, as doing so is key to construction of the
ray-tracing model. The local object and image planes for the
perfect lens need not correspond to the actual physical object or
image planes for the overall system unless, of course, the system
is constructed that way. Instead, the localized conjugate planes
are, in general, virtual constructs used solely to determine the ray
path through the lens.

Sharp imaging, also known as stigmatic imaging, implies
that all rays leaving any given point on an object surface will
arrive at a single corresponding point on a conjugate surface
in image space. For homogeneous object and image spaces, it
is well-established that a rotationally symmetric perfect lens
can stigmatically image just one object surface to one image
surface (neglecting certain degenerate cases, such as perfect vir-
tual imaging of the whole object space via reflection by a plane
mirror, which are of little practical value) ( [1], p. 149; [10],
Ch. 22). Here we are interested in object/image surfaces that
are planar. Therefore, a perfect lens can only provide stigmatic
imaging at one specific transverse magnification (or paraxial
magnification when distortion is present). This is distinctly
different from a paraxial lens, which provides aberration-free
imaging at any magnification and is therefore inconsistent
with Fermat’s principle. In our perfect lens model, the optimal
(paraxial) magnification is a user-specified quantity.

Because we adopt a localized imaging model, we are not
concerned here with an overall system stop or the location of
the pupils. Instead, while the lens can have a limiting aperture
that restricts ray transmission, the principal planes of the lens are
of primary interest. More specifically, it is helpful to utilize the
concept of principal reference spheres as described next.

When tracing a given ray, we first find the corresponding local
object and image points, determined by the locations where
the ray pierces the object and image planes of the lens as illus-
trated in Fig. 2. The first and second principal reference spheres
are centered on the object and image points, respectively, and
intersect the optical axis at the first and second principal points
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Fig.2. Schematic of a perfect lens showing the localized object and

image points for a given ray that is being traced through the lens. The
principal reference spheres are centered on these points. The principal
rays, which connect the object/image points to their respective princi-
pal points, are utilized internally within the lens model.

(see, e.g., [10], p. 194; [4], p. 430; and [13], p. 15). In some
limited respects the principal reference spheres are analogous to
the entrance and exit pupil reference spheres commonly used
in aberration theory. However, the principal reference spheres
pertain solely to the lens of interest and have no connection to
the system stop. In the paraxial regime, the principal spheres
become conjugate planes with unity magnification, while the
pupil spheres become conjugate planes with a magnification
that depends on the stop location. So these two sets of reference
spheres are fundamentally different entities.

While the principal reference spheres are conceptually very
important, for general ray-tracing implementation it is prefer-
able to calculate the ray coordinates at the principal planes and
to display the rays in a layout diagram such that they terminate
at the first principal plane and resume propagation at the second
principal plane (as shown in Fig. 1). If the user would like to
draw the principal reference spheres for one or more localized
object/image points, and optionally turn off drawing of the ray
segments to the principal planes, they can do so manually as
illustrated in Section 5.A, Fig. 8.

C. Optical Path Length Considerations and the
Cosine Rule

For a perfect lens, the optical path length (OPL) is the same for
all rays connecting any given object point to its image point. A
subtler, but vitally important, property of a perfect lens derives
from Hamiltonian optics, in particular from the cosine rule as
first derived by Smith in 1922 [14] and subsequently discussed
in other references; for example, see [10,15,16]. For the sake of
completeness, we present here a short derivation of the cosine
rule, by adopting a slight variation of the description provided
by Walther [10], Ch. 6. With reference to Fig. 3, we begin by
showing an object point P; that is stigmatically imaged to its
conjugate point ;. Therefore the OPL from P; to P,, denoted
as [ P1 2], is the same for all rays connecting P; and P,. Now,
consider a second object point Q; that resides within a small
neighborhood of P; and is located by an infinitesimal displace-
ment vector 471, and assume that it too is stigmatically imaged
to point Q; in the neighborhood of P, with displacement vector
d7,. This assumption requires that [ Q1 Q] be the same for all
rays connecting Q; and Q,. An equivalent requirement is that
the optical path length difference, given by [ Q; Q2] — [P P21,
be constant.
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Fig.3. Geometry for derivation of the cosine rule.

To quantify the situation, consider a single arbitrary ray
segment that begins at P;, pointing along a unit vector
51=(Ly, My, M) and intersecting the first principal refer-
ence sphere at A;. This ray then goes on to intersect the second
principal reference sphere at A, finally terminating at P, via
.?2 = (Lz, Mz, 1\72) Its OPL is [P1 Pz] = [P1A1A2P2]. TO ﬁnd
[ Q1 Q2] we can apply Fermat’s principle. Instead of using an
actual ray path from Q; to Q,, we take a path that is closely
adjacent to the ray path from P; to P, (going through A; and
A3), which is possible because the two object points and their
respective image points are infinitesimally close to one another.
Fermat’s principle of stationarity ensures that the adjacent path
OPL from Q; to Q,, denoted [ Q; A1 4, Q5], is approximately
equal to the actual ray OPL, which we write as [ Q; Q-] at least
to first order in the small displacements. We therefore have

(Q Q] =[PP =[Q 414, Q] = [P A1 Ay Py
= (4 Q] = [4P]) — ([AA] = [Q:i 4]
=n2?2 d;z - ﬂI;I d;l

=ny C05(¢2)|d;2| —n COS(¢1)|d7l [.
(1)

Here we have expressed the vector dot products in terms of the
cosines of the angles between the vectors as shown Fig. 3. As
noted previously, this expression for the OPD must equate to a
constant if Q; and Q; are to be stigmatically imaged. Dividing
by |d71| and noting that the differential magnification asso-
ciated with these field points is |m4| = |d7,|/|d71|, the above
expression leads to the cosine rule as follows:

|41y cos(¢y) — ny cos(¢y) = C, (2)

where C is a constant specific to the given field points. Since the
cosine rule must apply for all rays connecting P; and P, if we
change 5 and 55, the angles ¢; and ¢, will also change, but the
constant remains the same. So, we can calculate the constant
using any convenient ray of our choice, and then use this con-
stant to find other rays connecting P; and P, by calculating the
outgoing ray segment 5, given an incoming ray segment 5. In
other words, the net consequence of the cosine rule is that the
angle of a ray coming to focus at an image point can be found
from its angle of departure from the object point.

D. Generalized Sine Condition

The cosine rule applies to displacement vectors &7, and d7r,
residing in small three-dimensional volumes centered on P; and
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P,, respectively. Of primary interest here is imaging from an
object plane to an image plane, both planes being normal to the
optical axis. In this case we restrict the displacement vectors to lie
in infinitesimal two-dimensional circles on these planes.

In general, for a lens with distortion, the displacement vec-
tors need not be parallel to one another. For example, a small
displacement of an arbitrary object point in the x direction may
yield a shift of the image pointhaving both x and y components.
However, for a lens with axial symmetry, as we assume here, this
coupling can be avoided by constraining the object point to lie
on either the x or y axis. We choose the y axis, so the object and
image points both reside in the y z plane, which we refer to as the
tangential (or meridional) plane. Doing so simplifies calculation
of the differential magnification components. To accommodate
an arbitrary off-axis object point, the lens system (including the
incoming ray) can first be rotated about the z axis to bring this
point into the tangential plane, then the ray of interest can be
traced from the new object point location through the lens, and
finally the lens coordinate system containing the outgoing ray
segment can be rotated back to its original orientation. More
detail about this process is discussed in Section 3.A.

Now, assuming the object point lies in the tangential yz
plane, if we choose one set of displacement vectors to be oriented
along the x direction and a second set along the y direction, the
cosine rule yields the following two relations, which constitute
the generalized sine condition (GSC) (for related versions see

(14],p.37;[17],Eq. 11):

}’}’Idxﬂzlz - ﬂlLl = Cx
mﬂ!},ﬂzMz — 7’!1M1 = C),. (3)

Here m g, = dx/dx, and my = dy,/dy, are the components
of the differential magnification along the x and y axes, respec-
tively, while C, and C, are field-dependent constants. For a
lens having distortion, such as a perfect Fourier transform lens,
m 4 and m, vary with field (i.e., with the y; value) and can take
on different values, meaning the system is locally anamorphic
as discussed further in Appendix A. However, for a perfect
imaging lens m, is isotropic and constant over the field of view,
and can be equated to the paraxial magnification 7, (i.e.,
Mg = mgy = m,).So when modeling a perfect imaging lens it is
not necessary to confine the object point to the y z plane, thereby
avoiding the rotation operation.

This formulation of the GSC makes use of the ray direction
cosines, but these (L, M) values for a ray segment can be found
by projecting the ray segment onto the xzand y z planes, respec-
tively, and then computing the sines of the angles that these two
projected vectors make with respect to the z axis. For this reason,
Eq. (3) is considered a “sine” condition. In addition, note that
Eq. (3) uses 74, and m,,, which can be positive or negative,
whereas Eq. (2) uses |m,|. With a little effort, the interested
reader can confirm the signs of 72, and 7, are needed when
converting the cosine rule based on the angles ¢1, ¢, (now mea-
sured with respect to differential displacement vectors confined
to the xy plane) to the sine condition based on (L, M) values.
Lastly, Eq. (3) is referred to as the “generalized” sine condition
because traditionally the Abbe sine condition applies to on-axis
points with the constants C, = C,, =0 and my = mg, = m,,
while the generalized version allows us to explicitly consider

Vol. 63, No. 4/ 1 February 2024 / Applied Optics 1113

off-axis conjugate points, either with or without distortion. For
a perfect lens, the GSC is satisfied for all object/image conjugate
points throughout the local field of view of the lens, with each
field point having its own set of constants C, and C,.

Enforcement of the GSC at any given field point also ensures
local stigmatic imaging in the near vicinity of that point.
However, we do not rely on the GSC to yield stigmatic imaging;
instead, as will be seen in Section 3, we implement a model that
by design has no ray or wavefront aberrations, independent of
the GSC, when the lens is used at its specified optimal magnifi-
cation. We do, though, utilize the GSC to calculate the direction
cosines of the rays leaving the lens. Doing so ensures that the
angular composition of a ray bundle (e.g., an elliptic cone) com-
ing to focus at an imaging point s properly related to the angular
composition of the corresponding ray bundle leaving the object
point. It is in this sense that the model complies with Fermat’s
principle because the GSC derives from the cosine rule, which in
turn derives from the application of Fermat’s principle.

E. Distortion Considerations

The image from a perfect lens may or may not suffer from
distortion, but, regardless, it yields stigmatic imaging with a
one-to-one mapping of object-plane points to image-plane
points. Without distortion, perfect imaging is characterized
by a constant transverse magnification that is applicable across
the entire image plane. (So again there is no need to constrain
the object point to the yz plane via a lens system rotation as
discussed in the previous section.) Therefore, when imaging at
infinity, the image point location follows an fi tan(6;) relation-
ship in which f£; is the object-space focal length and 6, is the
incoming field angle. However, if distortion is present, then the
conventional transverse magnification, as well as the differential
magnification values, vary with the object point location (i.e.,
they are field dependent). In this case we can specify the paraxial
magnification for object points very near the optical axis, but the
change in transverse magnification with field depends on what
type of perfect lens the user would like to simulate. For example,
a perfect Fourier transform lens imparts f7 sin(6;) distortion
(see [5]; and [13], p. 36). Our Cardinal Lens model simulates a
perfect imaging lens as well as a perfect Fourier transform lens.
Additional details related to these two distortion relationships
are discussed in Sections 3.D and 3.E.

F. Conjugate Plane Locations

Given the effective focal length ( /) of the lens and the paraxial
transverse magnification (7,) at which stigmatic imaging
occurs, we can easily determine the locations, z; and z;, of the
local object and image conjugate planes (as shown in Fig. 2).
Beginning with the lens equation,

1 ) n1

—=2_1 4
T m a (4)

and combining it with an expression for the paraxial
magnification,

- Zz/i’lz

m, =
P ey

(5)
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leads to

Again, f is the effective focal length, with the front and back
focal lengthsbeing fi = 7; fand f; = n; f, respectively.

3. RAY PROPAGATION ANALYSIS: THE
CARDINAL LENS MODEL

We now describe how any given ray incident on the lens is traced
through the lens; the details comprise our Cardinal Lens model.
It is a two-step process in which we first find the principal ray
segments and then second use these principal ray segments to
facilitate tracing the ray of interest via the GSC. For purposes of
discussion, assume the object plane is located to the left of the
lens (negative z;) and the image plane is on the right (positive
;) as depicted in Fig. 2. In this case the lens is positive, so both
the object and image are real and the magnification is negative.
In general, though, the lens can be either positive or negative, so
the object and image planes can reside on either side of the lens.
This means the object, as well as the image, may be either real
or virtual in accordance with Eq. (6). The ray-tracing formu-
lation developed here is applicable to any of these combinations
(illustrated in Table S1 of Supplement 1).

A. Conjugate Point Locations

To determine the object point location (x1, y1), we simply
calculate where the incoming ray being traced crosses the object
plane. For the perfect imaging lens we can proceed directly
to calculation of the corresponding image point coordinates
as discussed below. For the perfect Fourier transform lens,
as noted in Section 2.D, we need to first apply a rotation to
the lens coordinate system to bring the object point onto
the y axis unless, of course, the object point already happens
to reside in the yz plane. The angle of rotation is given by
o = —atan2(y;, x1) + /2, where atan2 is the four-quadrant
inverse tangent function (yielding the azimuthal angle of the
object point as measured from the +x axis). The minus atan2
term takes the object point to the +x axis, and the 7/2 term
transfers it to the 4y axis. By using the standard 2D rotation
matrix, R(a)=[cose, —sina; sina, cose], the following
vectors are transformed: (x1, y1), (L1, M1), and (%1, v1). For
simplicity we use the same notation for the vectors after rotation,
with it being implicitly understood that for the Fourier lens the
ray analysis is conducted in the rotated coordinate system, and
the results are subsequently transformed back into the original
coordinate system via R(—a).

To determine the image point location, we make use of the
input/output principal ray segments as shown in Fig. 4. These
principal rays are not seen by the user; instead, they are only
used internally within the model. The incoming principal ray is
directed from the object point to the center of the first principal
plane; its direction cosines are denoted flp = (L1p, M1y, Nip).
From Fig. 4 we see M, , = sin(61, ). For the perfect imaging lens
we similarly have L, = sin(6,,), while for the perfect Fourier
lens L1, = 0.Ineither case, N, = (1 — L%P - Mlzp)l/z.

Back Image

f Focal Pplane
Plane Sap

Object Space
ny

S
1p/' Front \ . / Image Space
Object Focal Principal n
Plane Plane Planes 2
Fig. 4. Cross-sectional diagram of the tangential yz plane showing

the principal ray segments in object/image spaces. The object-space
principal ray 51, connects the object point (associated with a given
input ray) to the center of the first principal plane. The image-space
principal ray 55, propagates from the center of the second principal
plane toward a point on the back focal plane determined by the user’s
choice for the form of the lens distortion. The intersection of the
image-space principal ray with the image plane determines the image
point location.

Next, the form of the distortion is used to find the outgoing
principal ray in image space via its intersection with the back
focal plane. For the imaging lens, the back focal plane coordi-
nates are (X7, J2), which then allow us to find the image point
location (x7, y2) by extending the ray segment to the image
plane. The details are presented below in Section 3.4. In this case
the conjugate points are related via the paraxial magnification,
and the differential magnification components are equal to 72,,.
However, for a Fourier lens (after rotation), the x coordinates
in both the back focal plane and image plane are nominally
zero. However, to calculate the differential magnification com-
ponents, we need to examine small x and y displacements of
the object point (e.g., using 8x1 =38y; = 2,/1000) and find
the corresponding image point perturbations (§x3, 8y,), from
which we can readily calculate the differential magnification
values 7,4, = 8x3/8x1 and m g, = 8y2/8y1. So our analysis for
the Fourier lens case (Section 3.E) accommodates the necessary
8x1 (and corresponding 8x;) displacements out of the y z plane.

B. Managing Infinite Conjugates

At this point we digress briefly to address the issue of infinite-
conjugate imaging. For small values of magnification, the input
beam is close to being collimated, while for large magnification
the output beam is approximately collimated. The limiting
case of m, — 0 (with z; — £00) corresponds to an infinite
front conjugate case, so that all incoming rays are parallel to
the principal ray in object space. A similar situation applies
to the infinite rear conjugate case in which 7, — £oo (with
23 — F00). Numerically, we assume the infinite front and
rear conjugate scenarios correspond to |m pl<1le—10 and
|m,| > 1e+ 10, respectively. In these two limiting cases, we
apply along-conjugate approximation and somewhat arbitrarily
set z; =—1el0 (infinite front conjugate) and z, = +1el0
(infinite rear conjugate), both measured in lens units (typically
millimeters). We then internally set the paraxial magnification
so that it equals 2, /2 and, for the infinite front conjugate case,
temporarily modify the incoming ray direction cosines to make
them consistent with the finite long-conjugate approximation.
Next, as will be discussed in Section 3.F, we apply the GSC to
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obtain the output ray direction cosines, from which we calculate
the outgoing ray coordinates (#,, v;) (see Fig. 1). Because either
the incoming or the outgoing ray direction cosines are only
approximate, we lastly make the necessary minor adjustments to
the direction cosines to ensure the beam is properly collimated
in either object or image space. For the infinite front conjugate
case, this simply entails restoring the original direction cosines
of the incoming ray. For the infinite rear conjugate case, we set
the outgoing ray direction cosines equal to those of the outgoing
principal ray.

C. General Approach and Role of the Paraxial
Magnification

Our general approach utilizes the form of the distortion to
propagate the outgoing principal ray from the center of the
second principal plane into image space. As mentioned previ-
ously, we consider two cases: (a) a perfect imaging lens without
distortion, characterized by an f tan(0) response, and (b) a per-
fect Fourier transform lens with f'sin() distortion. For each
case we consider two separate ranges of magnification, |7,| <1
and |m,| > 1, which helps facilitate handling of the front and
rear infinite-conjugate scenarios. After deriving equations for
the outgoing principal ray direction cosines and corresponding
image point coordinates in Section 3.D (imaging lens) and
Section 3.E (Fourier lens), we turn our attention to tracing
the ray of interest in Section 3.F. The reader who is primarily
interested in using the Cardinal Lens model in OpticStudio, and
is less concerned with the mathematical details, may go directly
to Sections 4 and 5.

D. Perfect Imaging Lens

For a perfect imaging lens without distortion, the output princi-
pal ray leaves the center of the second principal plane and inter-
sects the back focal plane at coordinates

%y =mny fran(Or) =n, fL1,/ Ny,
y~2=”1ftan(91y)=711fM1p/Nlp~ (7)

Likewise, the front focal plane intercept coordinates are related
to the direction cosines (L2,, M,, N,,) of the outgoing prin-
cipal ray,

X = nzftan(92x) = ﬂszzp/Nz;;,

1 =m fran(by) =ny fM,/Ns,. (8)

1. Imaging Lens: Imp| <1

Note that [, <1 includes the case of infinite front con-
jugate imaging for which 7, =0, so in this regime we use
an approach that does not rely on the object plane location.
From similar triangles in the image space of Fig. 4 we see
y2/22 =92/ (n2 ), with a corresponding result for x, and x5,
which are then combined with Eq. (7) to determine the image
point coordinates,
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. _223?2_Z (”1)(L1p>
r=——=zn|—)|=)
ﬂzf 7y Nlp

_zap_(m) ( My
yz—nzf_zZ<n2)(Nlp). (@)

The length of the outgoing principal ray segment (from the
center of the second principal plane to the image point) is
rp= (x2 4+ y2 + 22)1/2, 50 the principal ray direction cosines in
image space are simply

LZp =sin(0y) = xZ/Vp,

sz :sin(@zy):yz/rp. (10)

2. Imaging Lens: |mp| > 1

For |m ,| > 1 (which includes the case of infinite rear conjugate
with z; — 00) we proceed by first calculating the outgoing prin-
cipal ray direction cosines. To do so we use Eq. (8) and write

Ly, X (”1) (M)
1 = — = —— — _— — ,
]\/2]’ }’lzf 5 21

52@25;:(@) <J£> (11)
Ny o f ny) \ 21

where, as seen from similar triangles in object space, we have
made use of y1/(n f) = y1/2 (along with a corresponding
result for x; and X;).

It is straightforward to show NV, = (1 + 2>+ b*)712, So
the object point coordinates yield values for 2 and 4, and hence
N, from which we determine the remaining direction cosines:

sz :al\lzp’
My, =bNy,. (12)

The image point coordinates then follow from these outgoing
principal ray direction cosines:

x3=(Lap/Nsy) 22,

)’2=(M2p/1v2p) 22. (13)

Note, because we constrain |z;| < 1el0, for the infinite rear
conjugate case (z; — 00) these image coordinates are only
approximations, but they are adequate for determining the
(2, v3) coordinates of the outgoing ray at the second principal
plane of thelens.

E. Perfect Fourier Transform Lens

For a perfect Fourier transform lens, in order to apply the GSC,
the object and image conjugate points are assumed to nomi-
nally reside in the yz plane (no x components). However, the
following analysis is not subject to this constraint; it includes
both x and y coordinates and is generally applicable to arbitrary
conjugate point locations. Therefore, it can be used to analyze
(8x1, 8x7) displacements of the nominal object/image points
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out of the yz plane as needed to calculate the differential mag-
nification in the x direction. Bearing this important detail in
mind, we can proceed in a fashion similar to that for the perfect
imaging lens, and begin by noting the output principal ray
intersects the back focal plane at coordinates

%y =n fsin(01,) = ”lfllp’
F2=mi fsin(0,) = m f M, (14)

while again the front focal plane intercept coordinates are related
to the direction cosines of the outgoing principal ray,

x1=mny fsin(Or) =na2 Ly,

j/'1 = nzfsin(sz) = nszZP. (15)

1. Fourier Transform Lens: |mp| < 1

As before, from Fig. 4 we have y2/2z; = y2/(n3 f), with a corre-
sponding result for x; and x,, which are combined with Eq. (14)
to determine the image point coordinates as follows:

2% ni
xa=——=z|— | Li,,
nzf )

22)72 71
yzzw:ZZ (—) Mlp' (16)

ny
Again, using 7, = (x7 + y3 + 23)'/%, the principal ray direction
cosines in image space are

Loy =2x2/rp,

MZp =_)/2/rp- (17)

2. Fourier Transform Lens: |mp| > 1

For |m,| > 1 (which includes the case of infinite rear con-
jugate with z, — 00) we proceed to calculate the outgoing
principal ray direction cosines by combining Eq. (15) with
31/ (m1 f) = y1/2 (along with a corresponding result for x; and
x1), as seen from similar triangles in object space, to yield

L= () (2)
) Z1

My, = (ﬂ) (7_1> : (18)
7y zZ1

The image point coordinates then follow from these outgoing
principal ray direction cosines,

x2=(L2p/ Nsy) 22,

y2= (M, ) Nsy) 2. (19)

Again we note for the limiting case of infinite rear conjugate
(such that numerically |z;| =1e10) these are approximate
values.
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F. Output Ray Direction Cosines from the
Generalized Sine Condition

Having found the image point coordinates through which the
output ray being traced must pass, we can turn our attention
to finding the direction cosines (L,, M, N;) of this output
ray segment. This is done by application of the GSC derived in
Section 2.D, so the result is consistent with Fermat’s principle.
Once we have the output direction cosines, we can determine
the intersection point (#3, v2) of the outgoing ray with the
second principal plane of the lens, which completes our task.

Consider first the perfect imaging lens case. With reference
to Fig. 5, we restrict attention to object points lying in the z;
plane and image points in the z, plane. We begin with the
known principal ray segment direction cosines, (L1,, M;,) and
(Lay, M), for the specific set of conjugate points associated
with the ray that is being traced. These principal ray direction
cosines are found as outlined in the previous section. Next
we apply the generalized sine condition to these principal ray
segments and compute values for C; and C:

Ce=magnrLyy — ny L1y = mayns sin(a,) — ny sin(61y),

Cy =mgny My, — ni My, = mgyny sin(6y,) — ny Sin(el}(%.o)

Again, we note that for a perfect imaging lens 7. = mg, = m,.
The constants of Eq. (20) can then be applied to the ray being
traced to find its output direction cosines given its input
direction cosines via Eq. (3),

L Cy
L=t G
M 1)
M2 _ n1M1 + C}, ’
m4),ﬂ2
_ 2 2\1/2
Nz_(l—Lz—Mz) . (21)

It is now a simple matter to calculate the output ray seg-
ment intercept coordinates at the second principal plane via
back-propagation from the image point, so

Principal P
Planes 2" Principal
Inbut Ra 15t Principal / \ Ref. Sphere Output Ray
P v Ref. Sphere being Traced
being Traced (uy,v1) (Ly, My, Ny)
(Ly, My, Ny) (uz,v7) , »Te 2
Image Point
(x2,¥2)
________________________________ I
Z2
Object Point_1/—"1
(x1,y1) 6,
Object Space Image Space
ny t n,
Fig. 5.  Cross-sectional diagram showing the input and output

ray segments, along with the principal ray segments. The output ray
segment being traced is found from application of the generalized sine
condition.
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uy =—(Ly/ N2z + x2,

vy =—(M/Ny)zp + 5. (22)

This completes the ray-tracing task. We reiterate that this for-
mulation applies to both real and virtual conjugate planes. (An
example of virtual imaging with a negative Cardinal Lens is
shown in Supplement 1.)

For the case of a perfect Fourier transform lens, rotation of
the lens system to place the conjugate points in the yz plane
means x; =x, =0, and the principal ray segments have
Ly, =L,, =0, which in turn yields C, =0. Additionally,
the 7m, components are found using the approach described in
Section 3.A. Otherwise, Eqs. (21) and (22) remain applicable
in the rotated coordinate system, and the resulting vectors
(L2, M) and (u3, v2) can be subsequently transformed back
into the original lens orientation via the inverse rotation.

G. Optical Path Length Modeling

Calculating the proper optical path length (OPL) of the ray as
it transits the lens (i.e., the OPL assigned to the ray in between
the principal planes) requires a few steps. First, the ray OPL
is internally computed as the sum of the OPL from the local
object point to the first principal plane, plus the OPL from the
second principal plane to the local image point—call this sum
OPL,. Second, this process is repeated using the principal ray
for the same local object/image points, yielding OPLy. Last,
the final OPL value assigned to the ray being traced equals
OPL; — OPL,. Doing so forces the optical path difference
(OPD) between the ray being traced and the principal ray to
equal zero. This allows analysis features in OpticStudio that
depend on the OPD to function properly (e.g., wavefront map,
point spread function, etc.). When a Cardinal Lens is used in
isolation at the specified paraxial magnification, no aberrations
are introduced, so the OPD is zero and the lens response is
diffraction-limited. A similar situation occurs when modeling
a more complicated optical train that includes glass elements,
but the local object/image planes for the Cardinal Lens happen
to correspond to intermediate conjugate planes in the optical
system (either real or virtual). In this case the ray aberrations
arriving at a Cardinal Lens are simply relayed through the
Cardinal Lens with the appropriate magnification—no addi-
tional aberrations are generated. However, if a Cardinal Lens is
used in a way that deviates from its optimal magnification, then
aberrations associated with the lens itself arise; an example is
provided in Section 5.D.

Lens Data X ‘
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4. IMPLEMENTATION IN ZEMAX OPTICSTUDIO

The Cardinal Lens ray-tracing procedure has been implemented
in Zemax OpticStudio v23.2 by using a custom user-defined
surface. It is written in C++ and compiled as a 64-bit DLL file.
The user must supply a value for the lens thickness (zero for
a thin lens), along with values for three parameters: (1) the
effective focal length, (2) the paraxial magnification for which
the lens is aberration-free, and (3) a binary switch value (0/1)
to indicate whether the lens is distortion-free with an f tan(6)
response, or it operates as a Fourier transform lens with intrinsic
f'sin(6) distortion. An example of these parameters entered in
the Lens Data Editor is shown in Fig. 6.

A. Cardinal Lens Model: Key Features

Here we summarize the key features of the Cardinal Lens DLL
implementation:

* The code internally determines the local object and image
conjugate plane locations for the Cardinal Lens; it accommo-
dates arbitrary conjugates (i.e., finite conjugate, infinite front
conjugate, or infinite rear conjugate—real or virtual).

¢ The Cardinal Lens may be used following reflection by a
mirror (i.e., in mirror space) in which the propagation distances
are negative.

* In OpticStudio, the first-order properties of a sequential
optical system are found using paraxial ray tracing. Therefore,
the Cardinal Lens also supports paraxial ray propagation based
on the effective focal length. Using the “Single Ray Trace”
analysis feature, the user can see both the real and paraxial ray
parameters; various operands available for use in the merit
function editor also rely on this paraxial capability.

* As mentioned previously, if the lens is used in an infinite-
conjugate arrangement, then appropriate corrections are made
to the ray direction cosines (which are initially computed using
a long-conjugate approximation) so that the final values are
accurate for true infinite-conjugate propagation.

B. Cardinal Lens Model: User Guidelines

In order to use the Cardinal Lens DLL in Zemax OpticStudio,
there are a few important guidelines that the user should follow:

* When entering the paraxial magnification, values of
|m,| <1le— 10 are treated as infinite front conjugate, while
|m,| > 1e + 10 corresponds to infinite rear conjugate.

* Proper visualization of the rays in a layout window
requires the user to insert a dummy surface immediately prior

Update: Editors Only » | @ & + @& K1 - $ dPoe

v |Surface 3 Properties < | >

O-<

-
S

®©

5 e ch @
Configuration 1/1

Surface Type Comment Radius Material Coating Semi-Diameter Chip Zone Mech Semi-Dia  Conic  TCEx 1E-6 I EFL Paraxial Mag | f*sin(theta) I
0 OBJECT Standard v Infinity Infinity Infinity 0.00000 Infinity 0.00000 0.00000
1 Standard v Infinity 5.00000 2.88163 0.00000 2.88163 0.00000 0.00000
2 STOP Standard v 1st PP dummy surface Infinity 0.00000 2.00000 0.00000 2.00000 0.00000 0.00000
3 User Defined v Cardinal_Lens Infinity 5.00000 421582 - - 0.00000 0.00000 2.00000 0.00000 0.00000
4 Standard v 2nd PP Infinity 2.60000 421582 0.00000 421582 0.00000 0.00000
5 IMAGE Standard v Infinity 0.35265 0.00000 1.00000 U 0.00000 0.00000

Fig. 6.

Example of the Cardinal Lens user-defined DLL surface (with its three input parameters) in the OpticStudio Lens Data Editor. The thick-

ness of the Cardinal Lens surface corresponds to the spacing between the principal planes.
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to the Cardinal Lens surface. This dummy surface should have
zero thickness and use the same material as the surface prior
to it. Therefore, the refractive index of the dummy surface
corresponds to the index for the front space of the lens.

e The material choice for the Cardinal Lens surface itself
establishes the refractive index for the rear space of the lens.
Therefore, the material choice for the surface immediately
following the lens surface should be the same as that for the lens
surface.

¢ The thickness of the Cardinal Lens surface corresponds to
the separation between the principal planes. If the Cardinal Lens
resides in mirror space, then this thickness should be negative.

¢ The user is advised to select the “Hide Rays To This
Surface” drawing option for the Cardinal Lens surface in order
to suppress the drawing of connecting lines between ray inter-
cepts points on the principal planes. These connecting lines do
not represent actual ray paths and are simply artifacts due to the
way the OpticStudio layout window works.

* Foran optical train containing a Cardinal Lens, the system
stop can in principle be located at any physically meaningful
location, either before or after the Cardinal Lens. However,
if the stop is located at or behind the second principal plane,
then paraxial ray aiming should be turned on, and utilization
of the pupil compress feature may be needed in order to shrink
the paraxial entrance pupil used for the initial condition of the
iterative ray aiming algorithm. It appears that the most robust
system aperture type is “Float by Stop Size.” The stop size may
also need to be reduced to ensure there actually exist rays that can
propagate through the lens to the edge of the stop.

* Unfortunately we find that the ray aiming algorithm may
fail to work in certain circumstances when using the Cardinal
Lens. The ray aiming algorithm details are not described in the
OpticStudio user documentation, so it is hard to know pre-
cisely why failure occurs. The goal of ray aiming is to produce
a desired spatial distribution of rays that fills the stop based on
the apodization setting (e.g., uniform). Also, we note that for a
typical surface in OpticStudio an output ray leaves the surface
from the same location that the input ray strikes the surface.
However, for the Cardinal Lens this is not the case, and, more-
over, the ray intercept mapping between the principal planes is
nonlinear. It appears that if this mapping becomes sufficiently
nonlinear and the outgoing rays have high NA, then the ray

(a)

.

————————10 mm

Fig. 7.
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aiming algorithm simply fails to work properly. Therefore, the
user is strongly encouraged to try and construct the optical path so
that the stop is placed in front of or on the first principal plane of the
Cardinal Lens. Doing so should yield a robust solution without
encountering the aforementioned difficulties.

5. EXAMPLES

In this section, we provide a few examples that illustrate the use
of the Cardinal Lens in Zemax OpticStudio via our user-defined
surface, Cardinal Lens.dll. Both the DLL and the example
models are provided in Code 1, Ref. [12].

A. Infinite-Conjugate High-NA Immersion Objective

First, consider the case of imaging at infinity (m, = 0) with a
high-NA immersion lens. In Fig. 7 we compare a paraxial lens to
athin Cardinal Lens, both having an effective focal length (EFL)
of 5 mm and no aberrations. The object space is air (7; = 1.0),
and the image space is water (7, = 1.3). The field angles are 0°
and 20°. The aperture is set to an entrance pupil diameter (EPD)
of 10 mm. For the Cardinal Lens, the paraxial magnification
parameter is zero as appropriate for this infinite front conjugate
case. Even though both lenses have the same EPD and EFL, the
focused beam NAs are quite different. For the paraxial lens the
NA = 0.80, while for the Cardinal Lens it is 1.0. As a result,
diffraction-related quantities such as the Airy disk diameter
and the modulation transfer function cutoff frequency are also
different for the two models. Clearly, if one were trying to model
awell-corrected microscope objective, the Cardinal Lens version
would provide a more realistic option. In OpticStudio, the
“Image Space NA” is taken to be a paraxial quantity; the actual
NA based on a real marginal ray should be calculated as one over
two times the “Working F/#.” We note for the Cardinal Lens
with an object at infinity, the relation EPD =2 - NA - EFL is
generally applicable.

It is also interesting to compare the value of the “Offense
against the Sine Condition” (OSC) for the two lenses of Fig. 7.
For an actual lens, the OSC is a dimensionless quantity equal to
the relative sagittal coma [18]. If spherical aberration is negli-
gible, and the OSC assumes a very small value, then linear coma

is also negligible for small off-axis fields. This is typically the

(b)

EPD =
10.0 mm

ke

—————————a 10 mm

Ray-trace layouts for imaging at infinity with an immersion objective, showing a comparison between (a) a paraxial thin lens with

NA =0.80 and (b) a thin Cardinal Lens with NA = 1.0. Both lenses have an EFL =5 mm and an EPD = 10 mm, but yield different numerical

apertures. Field angles of 0° and 20° are shown.
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Fig.8. Modified version of the Cardinal Lens shown in Fig. 7(b) to
make it a thick lens. Also, for each of the two incoming field angles
(0° and 10°), the corresponding output principal reference spheres
have been added to the model. The drawing options available in
OpticStudio have been used to suppress rays in between the first
principal plane and the second principal reference spheres.

case for well-corrected objectives. In our example here, both
lenses yield aberration-free focusing by design, so elimination
of linear coma does not come into play, but nonetheless the
OSC value provides a measure of how closely a lens follows the
sine condition. To compare the paraxial and Cardinal lenses,
we use a simplified version of the OSC = (u,/ sin U,) — 1,
where #; is the paraxial marginal ray slope and U, is the real
marginal ray angle, both taken in image space. The paraxial
lens has OSC = 0.261, while the Cardinal Lens has OSC = 0.
In passing, we should mention that OpticStudio provides a
merit function operand (OSCD) that calculates a more general
version of the OSC for imaging an object at infinity (based on
[18], Eq.9.41).

If desired, the user can simulate a thick version of the Cardinal
Lens. For example, Fig. 8 shows a 5 mm gap in between the
principal planes, obtained by simply setting the thickness of
the Cardinal Lens surface to 5 mm. In addition, the second
principal reference spheres can be manually added to the model
and displayed in the layout as shown in Fig. 8. In this case we
use two configurations, one for each of the two fields, and dis-
play both configurations simultaneously. For a given field the
corresponding principal reference sphere radius and tile angle,
which correspond to the output principal ray segment length
and angle, can be found via the merit function and then applied
to a corresponding dummy spherical surface via the multi-
configuration editor. The ray drawing options can be used to
suppress the rays in between the input principal plane and the
output principal reference spheres.

B. Microscope Objective with Tube Lens

When combining a Cardinal objective lens with a glass tube
lens, both the ray and wave aberrations associated with the tube
lens are apparent. Figure 9 shows the layout for an immersion
objective with an effective focal length of 5 mm and an object-
space index of 1.5, operating at NA = 1.3, followed by a simple
doublet tube lens having a focal length of 200 mm. This creates
a simple microscope system having a magnification of —40. In
this case the system aperture stop is placed on the first principal
plane of the Cardinal objective lens. The figure shows rays from
three field points (0, 0.25, and 0.50 mm). The principal planes
of the objective are separated by 10 mm. The objective lens has
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Cardinal Objective Lens
(EFL=5mm, NA =1.3)

(EFL = 200 mm)
— / |

Doublet Tube Lens

100 mm

Fig. 9.  Simple 40x microscope system based on a 10-mm-thick
Cardinal Lens objective (EFL = 5 mm, NA = 1.3) and a doublet tube
lens (EFL = 200 mm). Field points with y coordinates of 0, 0.25, and
0.50 mm are shown.

its paraxial magnification parameter set to —1.0e10, which the
DLL interprets as infinite rear conjugate. The ray aberrations
across the visible spectrum for the 0.5-mm field point, arising
solely from the tube lens, are clearly observed in the spot diagram
of Fig. 10(a). The OPD fans of Fig. 10(b) show the associated

wavefront aberrations.

C. Fourier Transform Lens: One- and Two-Element
Versions

A Cardinal Lens can function as a perfect Fourier transform
(FT) lens. This is done in OpticStudio by setting the f sin(0)
distortion switch in the lens data editor (Parameter 3 for the
lens surface) to a value of 1, which ensures the incoming angular
distribution of rays is mapped to the proper spatial distribution
of ray intercept points across the back focal plane. In a coherent
optical system, the back focal plane serves as the Fourier plane.
The focused spots in the Fourier plane have (x, y) coordinates
that are directly proportional to the (L, M) direction cosines
of the collimated beams, or angular spectrum components,
leaving the front focal plane, with the constant of proportion-
ality being the front focal distance ([13], Ch. 2). Of course an
optical FT is a diffraction phenomenon and should therefore be
simulated using wave optics (i.e., physical optics propagation, or
POD, in OpticStudio). However, from a ray-tracing perspective,
an ideal FT lens should provide the proper angle-to-spatial
mapping as well as the correct focusing NA, consistent with the
generalized sine condition, which is what we demonstrate here.

Figure 11(a) shows a Cardinal Lens configured as a thin
Fourier transform (FT) lens in air with f/1.0 and EFL = 10 mm.
The aperture stop is located in the front focal plane, so this is an
image-space telecentric configuration. The plot of Fig. 11(b)
illustrates the desired distortion.

A somewhat more complicated version of a compound FT
lens in air using two separate Cardinal lenses is shown in Fig. 12.
In this case each lens has an EFL = 50 mm, is 2 mm thick, and
the gap between them is 2 mm. The EFL of this lens assembly
is 25.51 mm. The first lens operates in infinite-front-conjugate
mode with a paraxial magnification of zero, and its distortion
switch is set to 1, corresponding to an fsin(6) mapping as
required for the FT operation, where fis the front focal length
of this first lens (note: in air this equals the EFL of the lens).
The second lens operates in finite-conjugate perfect-imaging
mode and applies no additional distortion. The appropriate
magnification and back focal distance for the second lens are
found by setting those values as variables and optimizing for
minimum focused spot size. The distortion associated with the
first Fourier lens is scaled by the magnification of the second
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Fig. 10.  Aberrations for the 0.5-mm off-axis field point of the microscope system shown in Fig. 9, which are solely attributable to the tube lens.
(a) Spot diagram showing transverse ray aberrations, and (b) OPD curves (plotted on a scale from —5 to +5 waves) representing the wavefront
aberrations.
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Fig. 11.  Example of a thin Cardinal Lens used in Fourier transform mode (in air with £/1.0 and EFL = 10 mm). (a) Ray-tracing layout for field
angles of 0° and 20° and (b) corresponding distortion plot showing the f sin(6) response.
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Fig. 12. Example of a compound FT lens using two Cardinal lenses, each having a thickness of 2 mm, with the lenses separated by 2 mm. The
optical path as constructed in the OpticStudio lens data editor is shown with the Cardinal Lens surfaces highlighted.
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Ray-trace layouts for finite-conjugate imaging with a Cardinal Lens in air (EFL =10 mm, m, = —2.0, NA; = 0.80, NA; = 0.40,

t =5 mm). Two fields are shown: (a) on-axis imaging and (b) off-axis imaging with y; =2 mm and y, = —4 mm. Because both the image space and
object space have the same refractive index, the upper and lower marginal rays each cross the two principal reference spheres at the same distance from

the optical axis as shown by the red dashed lines.

imaging lens such that the compound lens provides the correct
FT angle-to-spatial mapping based on the front focal length of
the compound lens assembly.

We conclude this section by mentioning that if two Cardinal
FT lenses are used for coherent imaging in a 4f configuration,
then an object in the form of a grating can be properly imaged
( [13], p. 21), whereas using two paraxial lenses leads to an
image having the wrong period; an example of this is shown in
Supplement 1.

D. Finite-Conjugate Imaging

In this section we illustrate a Cardinal Lens used for finite-
conjugate imaging, first at its optimal aberration-free
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magnification; then we next show how aberrations arise when
the magnification deviates from the optimal value. Figure 13
shows the optimal case with a 5-mm-thick lens used by itself,
and the layout magnification is the same as that of the user-
specified value (72, = —2.0), so no aberrations are present. The
diffraction-limited Airy disk radius is 0.76 um. The ratio of
the object-space to image-space numerical apertures equals the
paraxial magnification, or NA; /NA, = m » Also, because both
the object and image spaces have the same refractive index, the
upper and lower marginal rays each individually cross the two
principal reference spheres at the same radial distance from the
optical axis ( [13], p. 15). If the object/image-space refractive
indices are different, then this simple geometrical result is no
longer exact, but instead only holds approximately.

X-Pupil (Rel. Units)

X-Pupil (Rel. Units)

Fig.14. Aberrations arise when using the Cardinal Lens away from its optimal magnification value. Shown are results for the lens of Fig. 13 when
m, = —2.01. (a) On-axis spot diagram, (b) on-axis wavefront map, (c) spot diagram for the 2-mm off-axis field point, and (d) wavefront map for the

2-mm off-axis field point. The wavelength is 0.50 pm.
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If the lens of Fig. 13 is used at a magnification other than the
designated optimum value, significant aberrations can arise.
For example, if the paraxial magnification specification of the
lens is changed to 7, = —2.01, but we retain the same object
and image plane locations, the resulting spot diagrams and
wavefront maps are shown in Fig. 14. In this case, for both fields,
the RMS spot radius is ~10 pm and the RMS wavefront error is
~1 wave (with tilt removed from the off-axis field), so the lens is
now operating far outside of the diffraction limit. From Eq. (6)
we have z; = —14.975 mm and z; = 30.10 mm, while the lay-
out object and image plane locations remain at —15.0 mm and
30.0 mm, respectively, in accord with a layout magnification
of —2.00.

E. Ray and Wavefront Aberrations for the Cardinal
Lens

As a final example, it is instructive to consider how both trans-
verse ray aberrations and wavefront aberrations propagate
through the Cardinal Lens and to assess their self-consistency
with one another, which serves as a check as to whether or not
the lens complies with Fermat’s principle. Figure 15(a) shows a
biconvex lens operating with an object-space NA = 0.23 and
a magnification of —1. The first lens surface is selected as the
stop surface, and the aperture size is set via the specified NA

(a) Stop Surface
(Entrance Pupil Plane)
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value. The marginal ray suffers from significant aberration as
seen in the associated OPD fan of Fig. 15(b) with a value of
approximately 100 waves. Now consider, as shown in Fig. 15(c),
a Cardinal Lens used to relay this image with a magnification
of —1. Similarly, Fig. 15(e) shows a paraxial lens used for the
relay. For both cases the transverse ray aberrations are identical,
but the two corresponding OPD fans [Figs. 15(d) and 15(f)]
are quite different. The Cardinal Lens version has a maximum
OPD of 500 waves, while the paraxial lens imparts only 50
waves. In OpticStudio, various modes exist for computing the
OPD through a paraxial lens; here we use Mode = 1, which
provides the highest degree of accuracy.

The OPD is measured with respect to a reference sphere
that is centered on a point where the chief ray intersects the
image plane. In OpticStudio this reference sphere surface is
constructed so it contains the point where the chief ray crosses
the exit pupil plane. We expect there to be a change in the OPD
when adding a relay lens because the location of the exit pupil
changes relative to the new image plane; hence the radius of the
reference sphere changes. However, for both the Cardinal and
paraxial relays the exit pupil location is the same [specifically,
—6.6 mm from the final image plane in Figs. 15(c) and 15(e)].
So which OPD curve is correct? To answer this question, we
can employ the following well-established relations ( [1], p.
206) linking the transverse ray aberrations to the OPD, which is

()

Cardinal Relay Lens

Intermediate
Image Plane

20 mm

————— 1 20mm

(e)

Paraxial Relay Lens

Intermediate
Image Plane

—————————120mm

Fig. 15.
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Biconvex lens OPD and the change in OPD when using a relay lens. (a) Biconvex lens with 1:1 imaging and (b) its OPD fan. (c) Relay

imaging with a Cardinal Lens and (d) resulting OPD fan. (e) Relay imaging with a paraxial lens and (f) corresponding OPD fan.
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denoted by the function ®(x, y,):

R 0®
Ax=——,
n dx,
R 0®
Ay=——. (23)
n 9y,

Here R’ is the distance from a ray intercept point on the image
plane to its intercept point on the reference sphere, (x,, y,)
are exit pupil coordinates on the reference sphere, and 7 is the
index in image space. When the aberrations are small, then R’
can be well approximated by the radius of the reference sphere.
However, in our case the aberrations are significant, so we
must use the exact value for R'. Equation (23) is derived using
Hamiltonian optics (specifically Hamilton’s point characteristic
function) and therefore intrinsically applies to rays obeying
Fermat’s principle.

To proceed, we use a custom macro in OpticStudio to trace
a tangential fan of rays spanning the entrance pupil and record
the following data for each of the two relay lens options: y AV
®(y,), and R'(y,). Using Eq. (23) we calculate Ay from the
derivative of ®(y,) and compare this to the result found directly
from ray tracing as shown in Fig. 16. The ray fan computed
using the Cardinal Lens relay OPD agrees precisely with the ray
fan from direct ray tracing, while the paraxial lens relay OPD
leads to ray fan errors at the edges of the pupil (for | P, | > 0.9).
Therefore, the OPD in the Cardinal Lens case is correct as it
is fully consistent with the transverse ray aberration, which is
another indicator that the Cardinal Lens complies with Fermat’s
principle.

F. Summary of Additional Examples in the
Supplemental Document

Other examples involving the Cardinal Lens are provided in
Supplement 1, including (a) virtual imaging with a negative
Cardinal Lens, (b) its use in mirror space, (c) placing the system
stop at or behind the Cardinal Lens output principal plane in
which case ray aiming is required, (d) quantitative evaluation of
spherical aberration when the lens is not used at the prescribed

3 T T T T
Direct Ray Tracing ]
From OPD (Cardinal Lens) /
2 [———From OPD (Paraxial Lens) /]

Ray fan error when
using paraxial lens OPD

Transverse Ray Aberation (mm)

-1 0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
Normalized Entrance Pupil Coordinate (Py)

Fig.16. Comparison of ray fans based on direct ray tracing as well as

computed from the OPD fans for the Cardinal Lens and paraxial lens

relay cases [per Eq. (23)].
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magnification, including comparison to analytical results as
reported by Walther ( [10], Sec. 31.2), (¢) comparisons of the
Cardinal and paraxial lenses via 4f coherent imaging of a grating,
and (f) azoom lens example that includes a discussion of how to
converta paraxial lens to a Cardinal Lens. We also include a table
summarizing various configurations in which the Cardinal Lens
can be used, along with the associated paraxial magnification
values.

6. CONCLUSION

This paper presents a ray-tracing model for a perfect thick lens,
referred to as the Cardinal Lens, that satisfies the generalized sine
condition and is therefore consistent with Fermat’s principle,
but its formulation does not require the use of an eikonal func-
tion to represent the lens. When simulating a well-corrected
lens, this model provides a more accurate alternative compared
to use of a simple paraxial thin lens. Two versions of the model
are described, one being a distortion-free f tan(6) lens for imag-
ing applications, and the other having f'sin(f) distortion as
appropriate for a Fourier transform lens. In both cases, the lens
is free of aberration only when used at its prescribed (paraxial)
magnification. A version of the Cardinal Lens suitable for use
in Zemax OpticStudio has been coded as a user-defined surface
DLL, and a variety of ray-tracing examples using the DLL have
been provided (see Code 1, Ref. [12]). Itis hoped that this model
will be of some use to the lens design community as a relatively
straightforward means to mimic well-corrected compound
lenses for which detailed prescription data are not available.

APPENDIX A: FOURIER LENS DIFFERENTIAL
MAGNIFICATION

Consider a finite-conjugate imaging configuration based on
a single Cardinal Lens immersed in air, operating in Fourier
lens mode. For an object point located on the y axis at (0, y1),
a distance z; from the lens, the image point has a y coordinate
given by Eq. (16):

)—1/2

)/2=Zzsin(91)=22)/1(}’12+zf , (A1)

where 6; is the angle of the incoming principal ray with respect
to the optical axis. Due to this intrinsic distortion, the two
conjugate points are related by a field-dependent transverse
magnification, 7(y;), such that y, = m(y1)y;. Comparison
with Eq. (A1) shows

m(y) =z +2) " (A2)

For an infinitesimal y displacement of the object point, 4y, we
have

y2+dy, =m@y1 +dy)(y1 +dy)

am(y1)
3_)/1

2[7”(}/1)4- ﬂ')’l] (1 +dy).  (A3)

For notational convenience going forward, we drop the explicit
field dependence of the magnification. The differential image
pointdisplacement becomes, to first orderindy,
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om
dyz=[m+a—y1]dy17 (A4)
)1

from which the y-direction differential magnification follows:

dy, om
My =——=m+ —1y. (A5)
dy d}/] 8_)/1),1
From Eq. (A2) we have
om _ _
g = —22_)/1(_}’12 +zf) 32 = —my1()/12 +zf) y (A6)
1

Substitution into Eq. (A5) yields
My =m [l —ylz(ylz +z%)71] =m [1 — sin? 91] . (A7)

For small principal ray angles, #2,4,(y1) is approximately equal
to the conventional transverse magnification, m(y1), but
as the angle 6; increases (i.e., |y;| increases), the value of
may(y1) becomes progressively smaller than 72(y;). Finally,
we note that for this configuration, the x-direction differential
magnification remains equal to the transverse magnifica-
tion, or m(y1) = m(y1). As a result, a Fourier lens is locally
anamorphic.
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