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Ray-Tracing Model of a Perfect Lens
Compliant with Fermat’s Principle: The
Cardinal Lens: supplemental
document

In this supplement, we first include a table that summarizes various use cases for the Cardinal
Lens. We then provide additional examples of models in Zemax OpticStudio® [1] that utilize
the Cardinal Lens DLL user-defined surface. These models were constructed and tested using
OpticStudio version 23.2, but the DLL, which is compiled as a 64-bit DLL, is compatible with
older versions of OpticStudio, and even with Zemax Classic. In fact, we find the DLL appears to
work properly in Zemax 13 (64-bit version, released June 24, 2015), although very limited testing
was done using this older version. Copies of the model files are included in Code 1.

1. CARDINAL LENS CONFIGURATIONS: SUMMARY TABLE

The following table illustrates various Cardinal Lens configurations. The user is required to
enter values for the lens effective focal length (EFL) and its optimal paraxial magnification (11).
The local object and image (i.e., left and right) conjugate plane distances, z; and z;, respectively,
are measured with respect to the first and second principal planes of the lens. For numerical
purposes, |m,| < le-10 corresponds to infinite front conjugate while |m,| > 1e+10 corresponds to
infinite rear conjugate. The values for zy, z; and m), should be consistent with the lens equation
as shown in Eq. 6 of the main paper.
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Table S1. Table of common configurations in which the Cardinal Lens may be used.

2. ADDITIONAL CARDINAL LENS MODEL EXAMPLES

A. Negative Cardinal Lens for Virtual Imaging

In this case, we use a negative Cardinal Lens to generate virtual images of two field points
(NA = 0.1) that are telecentric in object space. The lens has a focal length f = —10 mm and a
thickness of 2 mm. The transverse magnification is 0.50. Figure S1 shows a layout on the left in
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Fig. S1. Example of a negative Cardinal Lens (f = —10 mm) with a thickness of 2 mm creating
virtual images of two telecentric field points. Rays propagating to the virtual image plane are
not drawn in the layout on the left, but they are shown on the right.
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Fig. S2. Screenshot of the OpticStudio model window showing the sequence of surfaces along
with spot diagram and OPD fan analysis windows which clearly show perfect imaging.

which only forward propagating rays are displayed, while the layout on the right shows rays
backpropagating to the virtual image plane. Figure S2 is a screenshot from OpticStudio that
shows the sequence of surfaces in the Lens Data Editor. Negative thickness backpropagation
allows rays to propagate from the second principal plane of the lens to the virtual image surface.
This screenshot also demonstrates perfect imaging with spot diagrams displaying point-focus
images and zero OPD across the entrance pupil for the two fields, both analysis windows being
set for evaluation at the virtual image plane surface.

B. Mirror-Space Example

The Cardinal Lens may be used in mirror space (i.e., following reflection by a mirror surface).
Figure S3 shows two paraxial lenses with a mirror in between them to relay the object plane
to an intermediate focal plane in mirror space. A Cardinal Lens with a thickness of 5 mm then
re-images the intermediate focal plane with 11, = -0.5 into a space with a refractive index of 1.5.
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Fig. S3. Example of the Cardinal Lens used in mirror space to relay an intermediate focal plane.
The lens thickness, like other thicknesses in mirror space, is negative; in this case it is -5 mm.

C. System Stop on Cardinal Lens 2nd Principal Plane
All of the examples in the main body of the paper have the system stop either in front of or
on the 1st principal plane of the initial Cardinal lens in the optical path — so ray aiming is not
needed. However, if the stop is placed on or after the 2nd principal plane of the Cardinal lens,
then paraxial ray should be utilized. The stop size may need to be chosen by using an iterative
approach in which it is initially set to a small value and incrementally increased until either the
desired value is reached or the ray aiming algorithm fails to work across the entire stop. The
pupil compress values may also need to be incrementally increased during this process

An example is illustrated in Figs. 54-S6. It is a finite-conjugate imaging arrangement with a
paraxial magnification m, = -0.25. The Cardinal lens has a thickness of 10 mm and an EFL equal
to 10 mm. Two field points are shown with y-coordinates of 0 and 5 mm. The input and output
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Fig. S4. Cardinal Lens used in a finite-conjugate imaging layout with the system stop placed
on the 2nd principal plane of the lens. Paraxial ray aiming is required.



numerical apertures are 0.21 and 0.83, respectively. As seen in Fig. S5, the system aperture is
designated as “float by stop size” so that the stop radius is set by the clear semi-diameter on
the 2nd principal plane surface. Uniform filling, or apodization, of the stop is chosen. Paraxial
ray aiming is turned on and the stop radius is incrementally increased until reaching a value of
19 mm; however, a pupil compress factor of 0.9 for both x and y (i.e., a 90% compression of the
paraxial entrance pupil size) is needed to ensure convergence of the ray aiming algorithm. To
confirm proper ray aiming, the user can look at the pupil aberration fans, which should display
small values across the entire pupil, or monitor the ray footprint diagram on the stop surface,
which should show rays distributed across the full stop area with a distribution given by the
chosen form of aperture apodization (see Fig. S6). If the ray aiming fails, then the pupil aberration
fans are not plotted and the text data shows NaN values at one or more pupil locations. For the
example here, the ray aiming fails when trying to further increase the stop size or use a smaller
pupil compression factor.
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Fig. S5. Aperture and ray aiming settings used for the layout shown in Fig. S4.
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Fig. S6. Pupil aberration plots and ray footprint diagram in the stop plane (which is the 2nd
principal plane of the Cardinal lens). These results demonstrate that the ray aiming algorithm
for the layout shown in Fig. S4 is working properly.



D. Spherical Aberration for a Cardinal Lens used at Non-Optimal Magnification

In the main body of the paper (Sec. 5.5) we provide an example of the aberrations introduced
when the Cardinal Lens is not used at its specified optimal magnification. Here we provide one
more example in which the spherical aberration is directly compared to analytical results derived
from an eikonal formulation as described by Walther ([2], Sec. 31.2).

Consider a 40X microscope objective in air with an EFL = 4 mm and NA = 0.85, used with
the object plane 10 ym closer to the lens than it should be, yielding an operating magnification
of -44.44. The layout is shown below in Fig. S7. The stop is placed in the back focal plane and
paraxial ray aiming is turned on. Rays leaving the on-axis object point have direction cosines
(L, M). Figure S8 shows a plot of the transverse spherical aberration versus L from our model
(with M = 0); data points from the Walther reference ([2], Table 31.1) are overlaid for comparison.
We find that our model agrees precisely with the analytical results.
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Fig. S7. A Cardinal lens simulates a 40X microscope objective operating at a magnification of
-44.44 which introduces spherical aberration. The object-space NA = 0.85.
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object-space ray). The results from the Cardinal lens model are compared to analytical data
points found using eikonal function theory ([2], Table 31.1).



E. Grating Imaging
A nice example of the difference between a paraxial lens and a Cardinal Fourier transform (FT)
lens is provided by grating imaging based on a two-lens telecentric coherent imaging system. In
this case an amplitude grating with a frequency of 200 cycles/mm is located in the front focal
plane of the first imaging lens (f; = 10 mm) and is illuminated by a monochromatic plane wave
(A =0.50 um). A second lens (f, =2 mm) is used to construct the grating image by placing it
a distance of f; + f, from the first imaging lens. The system therefore has a magnification of
m = fZ/fl =0.2.

The amplitude grating is mathematically taken to have the following form: ¢(x,y) = cos(27fy)
where fo = 200 mm ! is the grating frequency. This object has two Fourier components, namely
the +1 diffraction orders. Taking into account the magnification, the “perfect” image intensity is

2
I(x,y) = ‘t (%, %) ‘ = cos?(2rtfey/m) = % [cos (47t fgy/m) +1]. (S1)
We see the grating image should be periodic with frequency 2fg/m = 2(200) /0.2 = 2,000 mm !
(i.e., the grating image should have a period of 0.50 um).

We begin by constructing the system using paraxial lens as shown in Fig. S9. Two configurations
are used, one for each of the two diffraction orders. To generate the coherent image, we use the
Huygens PSF analysis tool with both configurations contributing so that we observe the coherent
sum of the two diffraction orders when they arrive at the image plane (Fig. S10). As expected,
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Fig. S9. Imaging of a sinusoidal amplitude grating with a pair of paraxial lenses.
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the image is sinusoidal, but upon closer inspection we see the period is 0.55 ym, not the ideal
value of 0.50 ym. This error is a consequence of the fact that the paraxial lenses do not provide
the necessary f sin(f) mapping, characteristic of a Fourier transform lens.

We can modify the layout by using Cardinal lenses operating in FT mode as illustrated in
Fig. S11. As before, we utilize the Huygens PSF analysis to generate the grating image, but in
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Fig. S11. Imaging of a sinusoidal amplitude grating with a pair of Cardinal lenses operating in
Fourier transform mode with f sin() distortion.

this instance the image fringe can display a lateral shift, or phase offset, because the chief rays for
the two diffraction orders do not in general intersect the image plane at the origin and instead
have offset intercept points as shown in Fig. S12. Of course, in practice, any lateral shift of the
grating itself would produce a corresponding shift of its image, so this effect is not particularly
important. However, if desired, we can eliminate the fringe shift in the model and thereby center
the fringe image without too much difficulty. To do this we need to impart a relative phase shift
between the two diffraction orders. To main symmetry, we choose to phase advance one beam
and phase delay the other. As indicated in Fig. S12, the required wavefront phase adjustment for
a given chief-ray intercept offset is simply given by ¢ = 6/A = y.M/A. Here y. is the y-intercept
coordinate of the chief ray at the image plane, and M is the chief ray y-direction cosine. The
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(L,M,N) Vi Phasefront

S=y.M

F————————q 2 mm

Fig. S12. Diagram showing how to calculate the phase offset needed to center the grating
image. Here 0 is the path length offset, which is converted to phase upon dividing by the wave-
length.
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Fig. S14. Cross-section of the grating image irradiance formed with Cardinal lenses operating
in Fourier-transform mode. The period is consistent with the transverse magnification.

phase offset ¢ can therefore be easily calculated in the merit function and then applied, with the
appropriate sign, to a given diffraction order via the polarization settings as shown in Fig. S13.
During propagation OpticStudio applies a clockwise phasor rotation to the field, so the overall
phase becomes increasingly negative as the ray propagates. Consequently, advancing the phase
requires adding a negative phase offset, while delaying the phase corresponds to a positive offset.
Doing this by the proper amount centers the fringe image on the origin. Now, with that detail
having been addressed, we see in Fig. S14 the image fringe pattern formed by the Cardinal lenses
has the correct period because the lenses have the proper f sin(6) distortion.

F. Zoom Lens and Conversion of a Paraxial Lens to a Cardinal Lens

The design of a zoom lens often begins with two or more paraxial lenses having variable sep-
arations in order to provide a tunable effective focal length, thereby allowing a user to zoom
in or out when imaging a distant object. Once the paraxial version is constructed with the
desired first-order properties, the lens designer must then replace each paraxial lens with an
equivalent lens group made from glass elements. In this example, we will take the opposite
approach, beginning with an actual zoom lens design (provided as a sample with OpticStudio)
and subsequently converting it first to paraxial form, then finally replacing the paraxial lenses
with Cardinal lenses. To facilitate this last step a macro is provided that calculates the conjugate
distances and magnification for a paraxial lens embedded in the optical train.

We begin with the zoom lens sample file provided with OpticStudio [3]. It is a two-group



design (positive-negative) taken from US Patent 4936661. Figure S15 shows the layout for three
separate zoom configurations. Using the EFLX merit function operand, we can easily find the
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Fig. S15. Zoom lens sample file provided with OpticStudio.

focal lengths of the two lens groups, and then replace them with paraxial lens versions. For each
configuration, the separation between the two paraxial lenses, as well as the distance from the
second lens to the image plane, are found via optimization with a merit function that drives the
paraxial version to have the same EFL as the actual zoom lens. The paraxial lens layout is shown
in Fig. S16.
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Fig. S16. Paraxial lens version of the zoom system shown in Fig. S15.

We now turn our attention to replacing the paraxial lenses with Cardinal lenses. Doing so will
illustrate the details associated with this transition (specifically how to choose the appropriate
magnification for Cardinal lens) along with the pros and cons of using Cardinal lenses in this
application. The first paraxial lens is used in an infinite-front-conjugate configuration, so the
paraxial magnification is zero and conversion to a Cardinal lens is trivial. However, the second
paraxial lens is used in a finite-conjugate arrangement. Moreover, the magnification at which it
is used varies as the zoom is adjusted. Because a Cardinal lens is designed to work optimally



only at a single magnification, we must pick one of the configurations to replicate. Here we select
the middle one (Config 2). Then naturally the question arises, what is the magnification value
at which the second paraxial lens operates in Config 2? It is not obvious from a simple visual
inspection of the layout, but a simple macro can be used to provide the answer.

We provide a macro (ZPL65.zpl) that can be used in conjunction with the ZPLM merit function
operand to return the conjugate distances and paraxial magnification for any paraxial lens in the
layout. The surface number of the paraxial lens of interest is entered into the “Hx” cell. In our
case Paraxial Lens 2 resides at surface 2. For “Data” values of 0, 1, and 2, the macro returns the
front conjugate distance, the rear conjugate distance, and the paraxial magnification, respectively.
Figure S17 a screen shot showing how the Lens 2 magnification changes from one configuration
to the next. To make the conversion to Cardinal lenses, we select Pmag = 2.38 from Config 2. The
resulting layout and spot diagram matrix are shown in Fig. S18. Config 2 remains diffraction

o Merit Function Editor v -0OX
THRIYX A C® S+=@
v Wizards and Operands < > Merit Function:  7.65037509416605E-11
|[ 4 Type Mack Data| Hx  Hy Px Py Ex Ey  Target Weight Value | % Contrib
1 CONFv 1
2 e~ 1 2897740 100000 2897740 456384E-05
3 | BLNK v Lens1(z1, 22, & pmag)
4 M~ 0/2.00000/0.00000|0.00000|0.00000|0.00000 0.00000 0.00000| 0.00000|-1.00000E+10|  0.00000
5 ZPM v 65 1 000000 000000 2082827  0.00000
6 ZPLM v 65 2 000000 000000 000000  0.00000
7 | BLNK ¥ Lens 2 (z1, 22, & pmag)
8 ZPM v 65 0/3.00000/0.00000 0.00000 0.00000/0.00000/0.00000 0.00000 000000 471137 0.00000
9 ZPLM v 65 1 000000 000000 _ 655471 0.00000
|10 zeLm ~ 65 2 0.00000 0.00000 0.00000
[11 Bink v
[12_ conF v 2
|13 e~ 1 4955283 100000 4955283 9640677
|14 BLNK v Lens 2 (21, 22, & pmag)
[15 zpm v 65 0/3.00000/0.00000|0.00000|0.00000| 0.00000 0.00000 0.00000 0.00000] 971137  0.00000 ‘
|16 zeLm v 65 1 000000 000000 2310446 0.00000
[17 zeum v 65 2 0.00000/ 0.00000 0.00000
|18 BLNK v
|19 conF ~ 3
|20 e~ 1 7649228 100000 7649228 2.27402E-03
21 BLNK v Lens 2 (21, 22, & pmag)
[22 zpim + 65 0/3.00000 000000 0.00000/0.00000/0.00000 0.00000] 0.00000] 000000 1219137  0.00000
|23 zpv v 65 1 000000 000000 4477308 0.00000
‘24 ZPLM v 65 2 0.00000 0.00000 0.00000
25 _BINK v

Fig. S17. Example of using the provided macro (ZPL65.zpl) to determine what the magnifica-
tion values are for the second paraxial lens in the three configurations of the zoom layout of
Fig. S16.
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Fig. $18. Cardinal lens version of the zoom system shown in Fig. S15. The magnification of
the second cardinal lens is chosen for optimal performance in the middle of the zoom range
(Config 2).

limited, while Config 1 and Config 3 incur aberration. This is to be expected since Cardinal Lens 2
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is only optimized for Config 2. Therefore, Config 2 remains aberration-free, while Config 1 and
Config 3 incur aberration.

In turn, this result suggests that if a lens or lens group needs to work well over a range of
finite conjugate conditions, then it should not be designed to obey the sine condition for a fixed
magnification. In this zoom lens example, the two lens groups can be designed such that there is
some degree of aberration balancing across the zoom range. In general, the extent to which an
actual lens deviates from the sine condition can be quantified by the “Offense against the Sine
Condition” (OSC) value; for example, see the OSCD merit function operand.
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